Жидкий кислород или O 2 – интересная голубая жидкость, которую вы можете довольно легко приготовить самостоятельно. Есть несколько способов сделать жидкий кислород. В нем жидкий азот используется для охлаждения кислорода из газа в жидкость.
Жидкие кислородные материалы
- Баллон с газообразным кислородом
- 1-литровый жидкий азот Дьюарка
- Пробирка (примерно 200 мл)
- Резиновая трубка
- Стеклянная трубка (для размещения внутри пробирки)
Подготовка
- Зажмите пробирку на 200 мл так, чтобы она находилась в ванне с жидким азотом.
- Подсоедините один конец отрезка резиновой трубки к кислородному баллону, а другой конец – к детали. стеклянной трубки.
- Поместите стеклянную трубку в пробирку.
- Откройте клапан кислородного баллона и отрегулируйте скорость потока газа так, чтобы представляет собой медленный и мягкий поток газа в пробирку. Пока скорость потока достаточно низкая, жидкий кислород начинает конденсироваться в пробирке. Для сбора 50 мл жидкого кислорода требуется примерно 5-10 минут.
- Когда вы наберете достаточное количество жидкого кислорода, закройте клапан на баллоне с газообразным кислородом.
Использование жидкого кислорода
Вы можете использовать жидкий кислород для многих из тех же проектов, которые вы бы выполняли с использованием жидкого азота. Он также используется для обогащения топлива, как дезинфицирующее средство (из-за его окислительных свойств) и как жидкое топливо для ракет. Многие современные ракеты и космические корабли используют двигатели на жидком кислороде.
Распределитель кислородных пузырей, уплотнитель и датчик кислорода в Galacticraft 3
Информация по безопасности
- Кислород – это окислитель. Очень легко реагирует с горючими материалами. По данным Канадского центра охраны труда и техники безопасности (CCOHS), материалы, которые вы обычно считаете негорючими, например сталь, железо, тефлон и алюминий, могут гореть с жидким кислородом. Воспламеняющиеся органические материалы могут взорваться. Важно работать с жидким кислородом вдали от пламени, искр или источников тепла.
- Жидкий азот и жидкий кислород очень холодные. Эти материалы способны вызвать сильное обморожение. Избегайте контакта этих жидкостей с кожей. Кроме того, не прикасайтесь к любому предмету, который был в контакте с холодными жидкостями, так как они могут быть очень холодными.
- Дьюары легко ломаются от механических ударов или воздействия резких перепадов температуры. Будьте осторожны, чтобы не повредить сосуд Дьюара. Не ставьте, например, холодный сосуд Дьюара на теплую столешницу.
- Жидкий кислород выкипает, образуя газообразный кислород, который увеличивает концентрацию кислорода в воздухе. Соблюдайте осторожность, чтобы избежать кислородной интоксикации. Работайте с жидким кислородом на открытом воздухе или в хорошо вентилируемых помещениях.
Утилизация
Если у вас остался жидкий кислород , самый безопасный способ утилизировать его – вылить его на негорючую поверхность и дать ему испариться в воздухе..
Обзор мода для майнкрафт Galacticraft|Как жить на других планетах
Интересный факт о жидком кислороде
Хотя Майкл Фарадей сжижал большинство газов, известных в то время (1845 г.), он не мог сжижать кислород, водород, азот, метан, окись углерода и метан. Первый измеримый образец жидкого кислорода был произведен в 1883 году польскими профессорами Зигмунтом Врублевским и Каролем Ольшевским. Через пару недель пара успешно сконденсировала жидкий азот.
Источник: recture.ru
Жидкий кислород
Жидкий кислород – это агрегатное состояние кислорода, в котором он представляет собой бледно-синюю жидкость. Он относится к категории веществ, которые одними из первых стали использоваться в разных областях промышленности. Жидкий О2 используется с двумя целями: для усиления процессов горения и для окисления химических процессов. Именно необходимость решения этих задач стала причиной популярности воздухоразделительного оборудования.
Физические свойства жидкого кислорода
В жидком состоянии кислород имеет бледно-голубой оттенок. При переливании из одной емкости в другую жидкий кислород выделяет водяные пары, поглощая тепло из окружающего воздуха. При этом температура воздуха резко снижается, что приводит к образованию тумана.
Этот вид кислорода способен закипать при температуре 183°С. Если в это время поместить его в среду, в которой температура воздуха составляет около 30-40°С, то кипение лишь усилится. При комнатной температуре жидкость быстро испаряется.
Для того чтобы снизить скорость испарения кислорода жидкого, его помещают в специальные баллоны. Баллон для хранения О2 представляет собой двухслойный сосуд. Внутренняя стенка баллона покрыта слоем серебра, а между ней и внешней стенкой полностью выкачан весь воздух. Слой серебра необходим для того, чтобы отражать тепло. В таком баллоне кислород может храниться на протяжении нескольких суток.
К другим физическим свойствам жидкого кислорода можно отнести следующие:
- температура кипения – -183°С,
- критическое давление – 497 атмосфер,
- температура плавления – -219°С,
- температура затвердевания – -220°С.
Как получают жидкий кислород?
Кислород, которым мы дышим, – это своеобразный «микс» из азота, кислорода и аргона. Смесь также содержит углекислый газ (0,03%), водород, закись азота и другие редкие газы. Для того чтобы перевести кислород в жидкое состояние, необходимо охладить воздух. При давлении в 50 атмосфер и температуре воздуха от -191,8 до -193,7 достигается глубокое охлаждение воздуха и его переход в жидкое состояние.
После этого проводят ректификацию, то есть отделение азота от кислорода. Этого добиваются путем многократного нагревания жидкости, в ходе которого первым делом испаряется азот, а оставшаяся жидкость обогащается О2.
В каких областях используют жидкий кислород?
В настоящее время жидкому кислороду находится применение в разных областях промышленности:
- химической,
- стекольной,
- металлургической,
- фармацевтической,
- целлюлозно-бумажной.
Жидкий О2 служит в качестве сырья для получения других химических соединений, вроде двуокиси титана или окиси этилена. С его помощью также можно повысить производительность большинства окислительных процессов.
В стекольной промышленности кислород применяется для интенсификации процессов горения, необходимых для поддержания работы стеклоплавильных печей. Помимо этого, он помогает снизить выбросы оксида азота и увеличить эффективность стекольного производства.
С этой же целью жидкий О2 используется в металлургии, где он обогащает воздух и повышает эффективность процесса горения.
С жидким кислородом связано ускорение процессов роста клеток, поэтому в фармацевтике его добавляют в ферментеры и биореакторы.
В целлюлозно-бумажной отрасли промышленности с помощью этого вида кислорода осуществляется окислительное экстрагирование, обработка сточных вод и делигнификация (процесс получения целлюлозы).
Помимо этого, кислородом жидким пользуются в автомобилестроении и машиностроении, где он применяется в качестве вспомогательного газа во время лазерной резки. Его также добавляют в состав защитных газовых смесей.
Техника безопасности при работе с жидким кислородом
При работе с жидким кислородом нет угрозы отравления, но все же некоторые требования безопасности необходимо строго соблюдать:
- надевать специальную одежду для защиты участков тела от обморожения,
- избегать контакта с открытым пламенем во время и через 20-30 минут после работы с О2,
- проводить сварочные и ремонтные работы только через 2-3 часа после окончания манипуляций с этим видом газа,
- перед перекачкой О2 необходимо слегка охладить систему путем небольшого расхода продукта.
Преимущества сотрудничества с НПК «Грасис»
Научно-производственная компания «Грасис» осуществляет поставки оборудования, которое позволит вам самостоятельно получать газообразный кислород из атмосферного воздуха.
Наша компания более 10 лет занимается разработкой и производством газо- и воздухоразделительного оборудования, а также инжинирингом, проектированием и выполнением комплексных работ «под ключ». Мы поможем вам решить любые задачи, связанные с газо- и воздухоразделением, утилизацией попутного нефтяного газа и подготовкой природного газа.
В процессе производства оборудования мы используем нанотехнологии и высококачественные комплектующие, благодаря которым улучшаются технико-эксплуатационные свойства продукции. Свяжитесь с представителями компании «Грасис», чтобы получить развернутую информацию о заинтересовавшей вас установке!
Более подробно Вы можете ознакомиться с кислородным оборудованием (кислородные генераторы, кислородные установки, кислородные станции) на странице www.grasys.ru
Не является публичной офертой
Получите больше информации
Отправьте запрос и наш менеджер свяжется с Вами в ближайшее время
Источник: www.grasys.ru
Расплескалась синева: первое получение жидкого кислорода
История сжижения кислорода под конец превратилась в соперничество. Но кто возьмет верх: инженер, всю жизнь проработавший на металлургическом заводе, или специалист по физике низких температур в Женевском университете? Лед или пламень, теория или практика, Эйфелева башня или Суэцкий канал одержат победу? Об этом читайте в рубрике «История науки».
Жидкий кислород, налитый в химический стакан, а не в сосуд Дьюара, удивит вас красивым голубым цветом. Этот цвет в прямом смысле небесной лазури – ведь этот газ составляет 21% воздуха. Но первым человеком, получившим его, был вполне приземленный инженер и владелец завода, не привыкший мечтами парить в небесах.
Луи-Поль Кайете родился в Бургундии, в живописной коммуне Шатийон-сюр-Сен. Школьное образование он начал получать там же, продолжил в Париже, а затем поступил в Горный институт вместе с братом Камилем. Там, в химической лаборатории, Луи познакомился со множеством будущих знаменитостей французского научного мира. Окончив институт, братья совершили несколько поездок в Англию, Австрию и Германию, тоже с образовательными целями: там они увидели самые современные доменные печи и прокатные станы, знакомились с самым передовым оборудованием. Но заниматься всю жизнь одной наукой не получилось: отец и дед молодых людей состарились, и дома, в Бургундии, нужна была помощь в работе на металлургическом заводе.
Шатийон-сюр-Сен
Myrabella / Wikimedia Commons / CC BY-SA 4.0
Но и там Луи не прекратил научных изысканий. Сначала он занялся исследованием процессов горения древесины в печах, показав, что этот процесс приводит к выделению углекислого газа. Была у него слабость и к ботанике: свободное время он уделял своей небольшой оранжерее, где выращивал редкие орхидеи и бегонии, в результате даже опубликовав несколько статей по физиологии растений.
Оранжерея Кайете
Francois Darbois/Wikipedia
После того, как его брат умер от туберкулеза, а отец и дед – от старости в 1860-х годах, Луи-Поль Кайете остался единственным владельцем завода. Но это только подстегнуло его исследования. Он занялся изучением выплавки чугуна и участием в ней разных газов. Для понимания процессов в плавильных печах ученому нужно было измерить температуру и давление. Однако существующие приборы не работали в большом диапазоне температур и давлений, и Кайете посвятил полтора десятка лет своей жизни усовершенствованию манометров и термометров, а также изучению зависимости объема газов от давления и температуры, описанной законом Бойля-Мариотта.
Луи-Поль Кайете
Wikimedia Commons
В 1870 году на первом этаже оранжереи он построил себе лабораторию, оборудованную мощным гидравлическим насосом, чтобы изучать химические вещества при высоком давлении и температуре. Итогом его работы стал манометр, способный измерить давление до 400 атмосфер. В 1891 году он даже установил свой манометр на Эйфелевой башне.
Тогда Кайете и заинтересовался сжатием газов и решил получить их в жидком виде. В ноябре 1877 года он проводил опыты по сжижению ацетилена и диоксида азота, сначала сжимая их под большим давлением, а потом охлаждая их другими сжиженными газами. Кайете использовал эффект Джоуля-Томпсона, зная, что если замораживать газ при сильном давлении, а затем позволить ему резко расшириться, температура газа упадет еще больше.
Аппарат Кайете для сжижения газов
Popular Science Monthly Volume 12/Wikipedia
Но оборудование было несовершенным и не идеально герметичным, поэтому сжигаемый газ просачивался наружу. И только по небольшому облачку в сосуде он понял, что эксперименты увенчались успехом. Перед публикацией результатов Кайете проверил, не вызывают ли образование облачка примеси в ацетилене. Но, как выяснилось, и химически чистый ацетилен из лучших парижских химических лабораторий вел себя точно также. Но сжижать ацетилен было несложно, чего нельзя сказать о водороде (с которым, кстати, Кайете совладать так и не сможет – его аппарат неспособен был охладить этот газ до нужных температур, около -200°C).
Воодушевленный первым успехом, Луи-Поль Кайете приступил к работе по сжижению атмосферных газов. Начать он решил с кислорода. Схема опыта была похожей: сначала ученый довел давление в сосуде до 300 атмосфер, потом охладил газ до -29°C, а затем заставил расшириться при помощи паров диоксида серы. И снова получилось облачко капель, сконденсировавшихся в результате охлаждения.
Свой отчет Кайете представил Академии наук 24 декабря. Но там его настигло неприятное известие: оказалось, что другой ученый уже прислал им телеграмму о сжижении кислорода два дня назад.
Рауль Пикет
Wikimedia Commons
Этим ученым был физик из Женевы Рауль Пикте. Он был третьим из пяти отпрысков старинного швейцарского рода. Получив образование в Париже, Пикте к тому времени уже семь лет возглавлял кафедру в Женевском университете, занимаясь физикой низких температур.
До этого он успел поработать в Египте во время строительства Суэцкого канала, реорганизовав образовательные учреждения в этой стране. В отличие от своего французского соперника, он сам не занимался инженерным делом и прикладной наукой, хотя и верил в важность образования в обеих областях. Несмотря на это, у него, несомненно, был изобретательский талант: уже в 23 года он сконструировал холодильную установку, которая производила 15 килограммов льда в час. Идея Пикте о том, что в холодильных установках должна быть смесь двух веществ, была развита в дальнейшем и использована на практике при создании холодильников и криогенного оборудования.
Лаборатория Рауля Пикте
Ch. Baude/L’Illustration, du 19 janvier 1878, vol. LXXI, p. 45, et L’Exposition de Paris, journal hebdomadaire, du 28 mai 1878, N°4, p. 28
Методы получения сжиженного кислорода Кайете и Пикте различались: швейцарец подверг кислород сжатию до 320 атмосфер, охладив его до -140°C при помощи паров сернистой и угольной кислот (по сути, оксидами серы (IV) и углекислым газом). Но, самое главное, оба метода работали, а фактически опыты Кайете увенчались успехом раньше, несмотря на то, что он долго составлял свой отчет.
Разрешить спор помог Анри Девиль – французский физикохимик, разработавший промышленный способ производства алюминия и преподаватель Сорбонны. Также он ввел теорию диссоциации – разложения вещества при нагревании – и изготовил эталоны метра и килограмма из сплава платины и иридия для Международной комиссии мер и весов в 1872 году.
К такому влиятельному ученому нельзя было не прислушаться. Так на чьей же он был стороне? Оказалось, Девиль, друг Кайете, получил от него письмо, датированное 2 декабря, с точным и полным описанием опыта по получению кислорода. При возникновении разногласий Анри Девиль тут же доставил доказательства секретарю Академии наук. Так Луи-Поль Кайете и стал известен как первый ученый, получивший кислород в жидком виде.
Источник: indicator.ru